The ATLAS Experiment at LHC Status and First Results

Beate Heinemann, UC Berkeley and LBNL BNL, May 2010

Outline

- The ATLAS Experiment
 - Data Taking and Luminosity
 - Physics Goals
 - Brief reminder
 - Current Detector Performance
 - First Physics Results

Conclusions and Outlook

The Large Hadron Collider (LHC)

ATLAS at the LHC

- Inner Detector: |η|<2.5
 - Silicon Pixels
 - Silicon Strips (SCT)
 - Transition Radiation Tracker (TRT)
 - Solenoidal magnet (B=2T)
- Calorimeters: |η|<4.9
 - EM: Lead/LAr
 - HAD: Steel/scintillator + Cu/LAr
- Muon System: |η|<2.5
 - Precision chambers (MDT and CSC)
 - Trigger chambers (RPC and TGC)
 - Air-core toroid magnet (∫BdL=1-7.5 Tm)
- Several forward detectors
 - Luminosity measurement

ATLAS Subdetectors

ATLAS Detector Operation

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.5%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.0%
LAr EM Calorimeter	170 k	98.5%
Tile calorimeter	9800	97.3%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
LVL1 Calo trigger	7160	99.8%
LVL1 Muon RPC trigger	370 k	99.7%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Chambers	370 k	97.3%
TGC Endcap Muon Chambers	320 k	98.8%

All ATLAS subdetectors operate 97-100% of their channels,

Collisions in ATLAS!!

Nov. 23rd: first collisions

Dec. 6th: first collisions with full detector in nominal conditions

Dec. 8^{th} : first Collisions at \sqrt{s} =2.36 TeV

Summary of 2009 Data Taking

Peak Luminosity $7 \times 10^{26} \text{ cm}^{-2}\text{s}^{-1}$

Recorded data samples	Number of events	Integrated luminosity (< 30% uncertainty)
Total With stable beams At √s=2.36 TeV	~ 920k ~ 540k ~ 34k	~ 20 µb ⁻¹ ~ 12 µb ⁻¹ ≈ 1 µb ⁻¹

(First 2010 collisions at $\sqrt{s}=2.36$ TeV taken on March 14th)

7 TeV Collision: March 30th

Run Number: 152166, Event Number: 316199

Date: 2010-03-30 12:58:23 CEST

ATLAS IP Separation

H = 4.170 mm: V = 0.021 mm

CMS IP Separation

H = 0.139 mm: V = 3.924 mm

ATLAS Coll Rate Evol

6

8

10

12

2

CMS Coll Rate Evol

Celebrating 7 TeV Collisions

Luminosity

- Single most important quantity
 - Drives our ability to detect new processes

$$L = \frac{f_{rev} n_{bunch} N_p^2}{4 \pi \sigma_x \sigma_v}$$

```
revolving frequency: f_{rev}=11245.5/s #bunches: n_{bunch}=2808 #protons / bunch: N_p= 1.15 x 10<sup>11</sup> Area of beams: 4\pi\sigma_x\sigma_v~40 \mum
```

– Rate of physics processes per unit time directly related:

$$N_{obs} = \int L dt \cdot \epsilon \cdot \sigma$$

Efficiency: optimized by experimentalist

Cross section σ: Given by Nature (calc. by theorists)

Ability to observe something depends on Nobs

Instantaneous Luminosity

$$L = \frac{N^2 k_b f}{4\pi \sigma_x \sigma_y} F = \frac{N^2 k_b f \gamma}{4\pi \varepsilon_n \beta^*} F$$

Nearly all the parameters are variable

- Number of particles per bunch N
- Number of bunches per beam k_b
- Relativistic factor (E/m₀)
- Normalised emittance ε_n
- Beta function at the IP β
- Crossing angle factor
 - Full crossing angle $heta_{
 m c}$
 - Bunch length $\sigma_{\! z}$
 - Transverse beam size at the IP σ^*

$$F = 1/\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$$

ATLAS during First 7 TeV Collisions

Data all taken efficiently

- Minimum bias is taken at full rate during first fill
- High-level trigger (software-based) turned on after a few hours

Peak Luminosity Evolution

Integrated Luminosity

- Delivered: 16.9 nb⁻¹
- ATLAS recorded: 14.9 nb⁻¹ (ε=88%)
 - Inefficiency about 50% due Trigger deadtime and 50% due to subdetectors turning on/having problems

Beamspot in ATLAS

- Expected to decrease with 1/√s observed:
 - $-900 \text{ GeV}: \sigma_x = 200 \mu \text{m}$
 - -7 TeV: $\sigma_x = 75 \mu \text{m}$

Beamspot vs √εβ*

- Measured beamspot size consistent with accelerator measurements
 - Relation: $\gamma \epsilon \beta *= \sigma^2$

Physics Discovery Potential (very brief reminder)

Physics Cross Sections

 ∫Ldt=1 fb⁻¹ at LHC competitive with 10 fb⁻¹ at Tevatron for high mass processes

Higgs Production at the LHC

dominant: gg→ H, subdominant: Hqq (VBF)

Low Mass Higgs at LHC

- H→γγ challenges:
 - Large background qq $\rightarrow \gamma \gamma$ and from jets (with $\pi^0 \rightarrow \gamma \gamma$)
 - Mass resolution is key: requires brilliant calibration
 - At least 1 photon converts in 50% of events
 - Important to understand detector material
- VBF: Hqq→ττqq also very promising and important channel

Squarks and Gluinos at the LHC

- Cross sections depends on q̃/g̃ mass
 - Current limits: m(g)>300 GeV
 - Increase large compared to Tevatron

- May decay in cascades
 - Additional leptons or jets
 - Very model-dependent

- Search requires good understanding of
 - Leptons (e, μ and τ)
 - Jets (with and without b-tagging)
 - Missing E_T (due to LSP if R-parity conserved)
 - And need to trigger reliably on all of the above

Search Analyses: 0, 1, 2.. leptons+jets

- Signal can appear in many search analyses simultaneously
 - Depends on model details
 - Important to do all of them
- Top is most severe background in general

LHC SUSY Discovery Reach

- Current limits (Tevatron):
 - $m(\tilde{g}) > 300-400 \text{ GeV/c}^2$
 - LHC will surpass with ~0.1 fb⁻¹

Performance and First Results

Trigger

Events

Minimum Bias
Trigger Scintillator

- 2009:
 - Typical L1 rate 20 Hz
- 2010:
 - First run: 50 Hz
 - Recent runs: ~10 kHz
 - MinBias is prescaled now!

Trigger Efficiencies

- Efficiencies well behaved
 ^{0.8}
 Missing E_T
- Trigger generally operating very well

Tracking

Scatter Plot of Hits on Tracks

- Center of experiment
- Crucial for b-tagging, lepton/γ ID,...
- First ATLAS physics paper based primarily on tracking

Pixel, SCT, TRT Hit Distributions

 Excellent agreement between data and simulation

Resonances: K_s^0,Λ,D^*

 $\Delta(M(K\pi\pi) - M(K\pi))$:

Minimum Bias Stream, Data 2009 (vs=900 GeV)

- Results agree with expectation and simulation
 - Both position and width well understood

Particle Identification with Pixels

- dE/dx selection used to enhance kaons
 - Clear Φ→K⁺K⁻ signal

- Pixel detector measures energy loss dE/dx
 - Separates π,K,p
- Will also separate quasistable heavy charged particles (e.g. stau, ...)
 - Interesting for new physics

Jets

Raw measured jet energy: 300 GeV

Jets

 Jet rapidity and p_T spectra agree well with Pythia simulation

Calorimeter Response

- Calorimeter energy in R=0.2 cone around track / track p
- Measures response of calorimeter to charged pions
 - Critical for jet calibration

Data generally very well described by MC

Missing E_T

- Excellent agreement between data and MC
 - E.g. noise problems would lead to hard tail

W→ev_e

$Z \rightarrow e^+e^-$

Run Number: 154817, Event Number: 968871

Date: 2010-05-09 09:41:40 CEST

 $M_{ee} = 89 \text{ GeV}$

Z-ee candidate in 7 TeV collisions

Low p_T Electrons

- Low p_T electrons mostly from conversions and fakes
 - TRT provides e/π separation
 - use TRT to enhance e sample
- Studies of many key electron identification variables
 - Data agree well with MC

Photons and Conversions in 2009

Very good agreement of data with detector simulation

$W \rightarrow \mu V_{\mu}$

$Z \rightarrow \mu^+ \mu^-$

Run: 154822, Event: 14321500 Date: 2010-05-10 02:07:22 CEST

 $p_{T}(\mu^{-}) = 27 \text{ GeV } \eta(\mu^{-}) = 0.7$ $p_{T}(\mu^{+}) = 45 \text{ GeV } \eta(\mu^{+}) = 2.2$ $M_{\mu\mu} = 87 \text{ GeV}$

Z→μμ candidate in 7 TeV collisions

Dimuon Mass Spectrum

- J/ψ appeared recently!
 - $-N_{\text{event}} = 49 \pm 12$
 - $Mass = 3.08 \pm 0.02 \text{ GeV/c}^2$
- Will now provide excellent calibration sample

First B-tags in ATLAS

Decay distance of b: cτ≈0.5 mm

- Vertex tags in 900 GeV data
 - Remove vetoes against
 K⁰_s, Λ⁰, material
 interactions
 - Good agreement between data and MC
- May have seen first b-jet in ATLAS

First Physics Results

Charged Particle Multiplicities

- Measurement useful for
 - Tuning MC models
 - Measuring luminosity
 - Understanding soft QCD
- Phase space
 - $p_{T} > 0.5 \text{ GeV}$
 - $|\eta| < 2.5$
 - N_{charged}≥1
- Corrected for trigger, tracking and vertex efficiencies

dN/dn

- Current MC tunes underestimate data
- Increase about factor 1.8 from 0.9 to 7 TeV

p_T Spectrum

- Clear hardening of p_T spectrum observed
- MC models disagree by 20-80%

Number of Charged Particles

- Multiplicity increased at 7 TeV
- MC models disagree by 20-80%
 - In particular they all undershoot at high N_{charged}

50

Conclusions and Outlook

- The LHC era has started
 - Detectors are operating well
 - LHC performance remarkable and improving week by week
 - On track for 1 fb⁻¹ in 2011
- ATLAS detector pretty well understood already
 - Good agreement between data and simulation for
 - Tracking, Jets and Missing
 E_T, lepton/γ identification
 - First J/ψ's, W's and Z's seen
- If Nature is kind LHC experiments can find something in 2011

How to get to 1 fb⁻¹?

	LHC	LHC	LHC
	(now)	(2011*)	(design)
√s [TeV]	7	7	14
# of colliding bunches	≤ 3	≈ 7 00	2808
Protons/bunch [10 ¹⁰]	2	11.5	11.5
Energy stored (MJ)	<0.1	≈ 35	362
Peak Luminosity	7x10 ²⁸	1-2 x 10 ³²	10 ³⁴
[cm ⁻² s ⁻¹]			
Integrated Luminosity	10 nb ⁻¹	1 fb ⁻¹	10-100 fb ⁻¹ /yr

(* plan constantly adjusted in reaction to what is learned)

- In following weeks
 - Increase current per bunch from 2x10¹⁰ to 11.5x10¹⁰
 - Gain factor 25 in luminosity
 - But go back to β *=5m initially (loose factor 2.5 in luminosity)
 - Increase number of bunches each week by factor ~2
 - Gains factor 2 in luminosity each week

900 GeV Data

